
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Contemporary Software Modernization: Perspectives and
Challenges to Deal with Legacy Systems

Wesley K. G. Assunção
North Carolina State University

Raleigh, USA

Luciano Marchezan
Alexander Egyed

Johannes Kepler University
Linz, Austria

Rudolf Ramler
Software Competence Center
Hagenberg GmbH (SCCH)

Hagenberg, Austria

ABSTRACT
Software modernization is an inherent activity of software engi-
neering, as technology advances and systems inevitably become
outdated. The term “software modernization” emerged as a research
topic in the early 2000s, with a differentiation from traditional soft-
ware evolution. Studies on this topic became popular due to new
programming paradigms, technologies, and architectural styles.
Given the pervasive nature of software today, modernizing legacy
systems is paramount to provide users with competitive and in-
novative products and services. Despite the large amount of work
available in the literature, there are significant limitations: (i) pro-
posed approaches are strictly specific to one scenario or technology,
lacking flexibility; (ii) most of the proposed approaches are not
aligned with the current modern software development scenario;
and (iii) due to a myriad of proposed modernization approaches,
practitioners may be misguided on how to modernize legacies. In
this work, our goal is to call attention to the need for advances in
research and practices toward a well-defined software moderniza-
tion domain. The focus is on enabling organizations to preserve the
knowledge represented in legacy systems while taking advantages
of disruptive and emerging technologies. Based on this goal, we put
the different perspectives of software modernization in the context
of contemporary software development. We also present a research
agenda with 10 challenges to motivate new studies.

CCS CONCEPTS
• Software and its engineering → Software evolution; Soft-
ware architectures; •Computer systems organization→Cloud
computing.

KEYWORDS
Software migration, re-engineering, research agenda
ACM Reference Format:
Wesley K. G. Assunção, Luciano Marchezan, Alexander Egyed, and Rudolf
Ramler. 2024. Contemporary Software Modernization: Perspectives and
Challenges to Deal with Legacy Systems. In Proceedings of International
Workshop on Software Engineering in 2030 (SE 2030). ACM, New York, NY,
USA, 6 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Throughout the life of a software system, its architecture decays,
its underlying technologies become obsolete, the user requirements
change, or the company’s business models evolve—ultimately, caus-
ing the software to morph into what we call legacy systems [8]. The

SE 2030, July 2024, Porto de Galinhas, Brazil
2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

large majority of software currently in use are long-lived systems
that represent many years of competitive knowledge and business
value [26]. However, due to extensive maintenance and obsolete
technology, legacy systems are costly to maintain, more exposed to
cybersecurity risks, less effective in meeting their intended purpose,
and push up costs of digital transformation [7, 23, 36]. For instance,
the US government spent over $90 billion in fiscal year 2019 on IT,
from which about 80% was used to operate and maintain legacy
systems [23]. Also, the UK government spends £4.7 billion a year
on IT across all departments, and £2.3 billion goes on patching up
systems, some of which date back 30 years or more [36].

To remain competitive, companies must modernize their legacy
systems, preserving the hard-earned knowledge acquired through
many years of system development [26, 48, 52]. According to Sea-
cord et al. [48] “Software modernization attempts to evolve a legacy
system, or elements of the system, when conventionally evolution-
ary practices, such maintenance and enhancement, can no longer
achieve the desired system properties.” The process of modernizing a
legacy system leads to benefits such as easing engineering activities,
satisfying user needs, achieving new business goals, or reducing
costs [48]. Furthermore, modernization is amean to leverage the dig-
ital transformation [7], as it enables the use of emerging/disruptive
technologies such as artificial intelligence, high-performance com-
puting, cloud computing, IoT, robotics, and big data [31].

In the literature, we can find different modernization strate-
gies [31, 49]. For example, restructuring systems using components,
adoption of aspect-oriented development, re-engineering of system
variants into software product lines, migration to microservices,
and supporting for new hardware, e.g., multi-core/GPUs devices.
Even the software development process has been modernized, e.g.,
agile methods [32] and DevOps [13]. Additionally, modernization
has different driving forces and impacts related to organizational,
operational, and technological aspects [52]. For instance, the mod-
ernization can focus on independence for agile teams, optimize the
deployment, ease the inclusion of innovation, facilitate scalability,
or explore new market segments [49, 52].

Despite the existing studies on the topic of modernization, cov-
ering different strategies and aspects, there are still significant
limitations and gaps in the state of the art and the practice: (i) ex-
isting approaches are too specific and typically imply to individual
technologies or specific modernization scenarios only, without flex-
ibility. This limits their usefulness, reusability, or adaptation for
different technologies or scenarios; (ii) proposed approaches typi-
cally are not aligned with each other—often providing fragments
of modernization and at times even becoming outdated, as there
is no contemporaneous body of knowledge on the fundamentals

1

https://orcid.org/0000-0002-7557-9091
https://orcid.org/0000-0003-3096-580X
https://orcid.org/0000-0003-3128-5427
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

SE 2030, July 2024, Porto de Galinhas, Brazil Assunção et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

of software modernization; and (iii) the existence of several differ-
ent modernization strategies, on one hand, offers a wide range of
potential solutions, however, on the other hand, such diversity of
strategies may misguide practitioners, providers, and researchers
when looking for solutions for specific situations.

The studies that try to organize the existing pieces of work on
software modernization have several limitations. They only present
an overview of the state of the art [31]; are based on few case studies
or a subset of existing literature [25, 33, 49]; are outdated regard-
ing current emerging/disruptive technologies [20, 25–27]; partially
cover the modernization life cycle, and rarely take into account
organizational, operational, and technological aspects [31, 52]. As
pieces of work span across many years and focus on modernizing
for different purposes, there is a need for discussing modernization
in the context of the contemporaneous software development.

In this work, our goal is to call attention to the need for ad-
vances in research and practices towards software modernization
in the light of contemporary software development. The focus is
to preserve knowledge represented in legacy systems while em-
ploying disruptive and emerging technologies to the benefit of
users, companies, and society. Based on that, we contextualize the
different perspectives of software modernization and introduce a
research agenda with 10 challenges to be taken into account. Our
contribution is to motivate the discussion on software moderniza-
tion, present open challenges, and alert companies about risks in
adopting solutions based on popularity or hypes.

2 BACKGROUND AND RELATEDWORK
Seacord et al. [48] presented software modernization as a remedy
to face the legacy system crisis in the early 2000s. They discussed
how to keep or add business value through modern technologies,
reducing operational costs, and dealing with technical aspects, e.g.,
allowing better reuse and easier maintenance [48]. However, their
discussion is not totally aligned with current technological and
operational advances of contemporary software engineering.

To decide for which modernization strategy to adopt, companies
should perform a portfolio analysis. Figure 1 presents the portfolio
analysis quadrant extended from Seacord et al. [48] to bring for-
ward a contemporaneous perspective of software modernization.
In addition to the technical quality and business value dimensions,
we introduce innovation as additional dimension that is achieved
by new disruptive and emerging technologies—driving forces for
the modernization. The five quadrants presented in Figure 1 are:

• 1 Replace: legacy systems that have low business value
and low technical quality, i.e., accumulated technical debt,
should be replaced by new systems, using generic solu-
tions or off-the-shelf systems, instead of undergoing a re-
engineering or migration process.

• 2 Maintain: systems with high technical quality and low
business value should not require modernization effort, but
traditional maintenance activities should be used, just to
keep them operating and meeting customers need.

• 3 Evolve: high-quality legacies with high business value
should be actively evolved using traditional evolutionary
development practices for introducing new features, new
products, or even serving as third part for other systems.

2 Maintain
Security updates,

feature enhancements,
bug fixing.

4 Re-engineer
Preserve business

rules, improve
code quality, pay
technical debit.

3 Evolve
Extend the usage,

create new products,
external use.

1 Replace
Generic solutions,

off-the-shelf packages.

Low High

Lo
w

H
ig

h

Business value

Te
ch

ni
ca

l q
ua

lit
y

5 Migrate

Extend functionality,

leverage code,

benefit fro
m a

new technology.

New tech.

Innovation

Figure 1: Extended quadrant of the portfolio analysis for the
contemporary software modernization, adapted from [47].

• 4 Re-engineer: systems with high business value and low
technical quality should be re-engineered in order to pre-
serve business value, i.e., external quality, and manage the
technical debt, i.e., internal quality. This type of modern-
ization can be transparent to the end user.

• 5 Migrate: when the system has high business value and
a company decides to drive innovation with emerging or
disruptive technologies, independently of the system’s tech-
nical quality, a migration to the desired new technologies
should take place. This is, for example, the case when com-
panies foster a digitalization initiative.

In the literature, we can find several modernization strategies to re-
tain business value of legacy systems [31, 49]. For example, restruc-
turing systems using components [14, 19, 28]; adoption of aspect-
oriented development [3, 24, 43]; re-engineering of system variants
into software product lines [5, 6, 30, 42]; migration to microser-
vices [10, 12, 18, 29, 50–52]; supporting new devices or pieces of
hardware, e.g., from single-core to multi-core machines [38, 41, 45];
classical information systems to quantum computing [40, 53]; and
leveraging the use of AI/ML/Foundation Models [1], a current trend.
Even the software development process has been modernized, e.g.,
agile methods [32] and DevOps [9, 13]. Also, modernization has
different driving forces and impacts related to organizational, oper-
ational, and technological aspects. The modernization can focus on
independence of teams, optimizing deployment, adding innovation,
facilitating scalability, or exploring new market segment [49, 52].

Despite existing literature, the work on software modernization
has several limitations: studies only present an overview of the
state of the art [31]; are based on few case studies or a subset
of existing literature [25, 33, 49]; are outdated regarding current
emerging/disruptive technologies [20, 25–27]; partially cover the
modernization life cycle, and rarely take into account organizational,
operational, and technological aspects [31, 52]. Furthermore, these
studies are limited to exploring contemporary needs, e.g., digital
transformation [31]. Finally, software modernization must be seen
as a multi-perspective activity, which is discussed next.

3 MULTI-PERSPECTIVE AND CHALLENGES
In this paper, we propose amulti-perspective of softwaremoderniza-
tion in the context of contemporary software development. Figure 2
presents six perspectives that affect the process of modernizing a

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Contemporary Software Modernization: Perspectives and Challenges to Deal with Legacy Systems SE 2030, July 2024, Porto de Galinhas, Brazil

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

legacy system. These perspectives range from understanding the
legacy system, to conducting the transition from the legacy (or part
of) to the modern system. Based on this multi-perspective, together
with known needs, trends, and recent pieces of work in the topic of
software modernization, we present a research agenda structured
as a list of challenges (C), described in what follows.
C1: Lack of a comprehensive and contemporaneous body of
knowledge on software modernization. The pieces of work that
try to organize the existing body of knowledge on software mod-
ernization have several limitations, as discussed in Section 2. Based
on that, there is a need for a comprehensive and contemporaneous
body of knowledge about modernization strategies. We do not have
to reinvent the wheel but organize existing knowledge in the light
of the perspectives presented in Figure 2 and contemporary soft-
ware development approaches. Thus, we propose that researchers
should gather and classify a body of knowledge on software mod-
ernization based on both research and practice. For example, a first
step in that direction could be the knowledge base of architecture
decision records collected from open source projects in [11].
C2: Recommend the right approach based on the modern-
ization goal. In Figure 2, we present examples of goals that can
serve as driving forces for modernization. Based on specific goals,
some approaches are more appropriate than others. However, this
recommendation must be an informed decision. The challenge here
is to provide guidelines to support practitioners and companies
on how to choose the proper approach according to their goals,
avoiding deciding only based on technology “hypes”. For example,
microservice-based architectures have been advertised as a solution
for technology flexibility. However, a recent study has shown that
this is not the most common driving forces to migrate to microser-
vices [52]. Choosing the wrong approach can lead to inefficiency
and frustration in modernization. Hence, systems transformed into
microservice were migrated back to monolithic applications [34].
Based on such experiences, future research should compile a body of
knowledge (C1) to derive guidelines for recommending and adopt-
ing customizable or domain-specific modernization approaches.
C3: Establish hybrid environments to allow the legacy and
modern parts of a system operating together. In Figure 2,
we can see the three types of transition: (i) big bang, a.k.a. cold
turkey [15], which is the replacement of the legacy system with
the modern one at once; (ii) incremental modernization, following
a strangler pattern [22], in which parts of the legacy systems are
incrementally replaced by modern parts [48, 52]; and (iii) the co-
existence, in which legacy and modern parts operate together in
one system [44]. The big bang and incremental transitions are ex-
plored in literature, however, little is discussed on how to establish
a hybrid environment to allow the development and coexistence of
legacy and modern system. In this context, we envision research
to investigate how to enable hybrid environments, focusing on
the coexistence of legacy and modern. This is related to C5, as the
decision made with regard to what to do with the legacy system.
C4: Consider technical, operational, and organizational as-
pects during the modernization. The great majority of studies
on software modernization discusses the technical aspects of the

CONTEMPORARY
SOFTWARE

MODERNIZATION

LEGACY SYSTEM
- Large and complex

- Decayed architecture
- Obsolete technology

GOALS
- Systematic reuse

- Team independence
- Digital transformation

- New devices
- etc.

APPROACHES
- Microservices

- Software product lines
- Internet of Things
- Cloud computing

- etc.

TRANSITION
- Big bang

- Incremental
- Coexistence

TOOLS
- Visualization

- Repository mining
- SBSE
- etc.

ASPECTS
- Organizational

- Operational
- Technical

Figure 2: Different perspectives of software modernization
in the context of contemporary software development.

modernization [5, 18]. However, modernization has different driv-
ing forces and impacts related to organizational, operational, and
technological aspects [47–49, 52]. Software engineering involves
technologies, people, and processes to be aligned with business
strategies [21]. The challenge here is to propose approaches that
deal with all these aspects. While technical aspects must always
be considered, we argue that future work has to further explore
organizational and operational aspects alongside the technical ones,
balancing their priority and cost-benefit.
C5: Decide among replace, maintain, evolve, re-engineer, or
migrate. As presented in Figure 1, there are different forms of
modernization. Also, in Figure 2 we see that the legacy systems
can present different problem related to its technical quality. Based
on that, we can observe that choosing how to modernize a legacy
system is a multi-criteria decision. Thus, companies need solutions
to deal with this challenge. For that, we expect future work to
propose recommendation approaches for decision-making support
in terms of modernization possibilities, also taking into account
organizational, operational, and technological aspects (C4).
C6: Support digital transformation. Digital transformation is
currently a trend and is receiving great attention around the world.
For example, the European Union has the Digital Europe Pro-
gramme,1 Australia has the Digital Economy Strategy,2 in North
America there are the Canada Digital Adoption Program3 and the
Digital Strategy4 of the United States, and in Asia 11 countries have
joined forces in the Connecting Capabilities.5 Despite expected ben-
efits, the digital transformation is hampered by legacy systems [7].
In this context, modernization is a means to leverage the digital
transformation [7, 31]. However, there are no guidelines on how to
perform software modernization to leverage digital transformation.
Yet, the exiting few pieces of work on this topic only provide a
superficial overview. In this direction, we envision future work
1https://digital-strategy.ec.europa.eu/en/activities/digital-programme
2https://digitaleconomy.pmc.gov.au/
3https://www.ic.gc.ca/eic/site/152.nsf/eng/home
4https://www.state.gov/digital-government-strategy/
5http://connectedfuture.economist.com/connecting-capabilities/

3

https://digital-strategy.ec.europa.eu/en/activities/digital-programme
https://digitaleconomy.pmc.gov.au/
https://www.ic.gc.ca/eic/site/152.nsf/eng/home
https://www.state.gov/digital-government-strategy/
http://connectedfuture.economist.com/connecting-capabilities/

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

SE 2030, July 2024, Porto de Galinhas, Brazil Assunção et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Execution Transition

3. Select the
approach and

supporting tools

4. Execute the
modernization

5. Verify and
validate the

modernization

2. Analyze
the legacy

system

PlanningInitiation

1. Decide to
conduct the

modernization

Portfolio Analysis
Definition of goals

Legacy
System

Modern
System

Selection of approach
and supporting tools

Refactoring activities
Reverse engineering

Re-engineering

E2E testingOrganizational aspects
Operational aspects
Technical aspects

6. Replace or
Integrate with

the legacy

Transition timeline

Figure 3: Preliminary multi-perspective modernization workflow in the context of contemporary software development.

enriching the legacy system with modern emerging and disruptive
technologies to create new services and operations to companies’
workforce and users.
C7: Prepare the legacy for the modernization.When the legacy
system has a high business value, it is a candidate for modernization
by re-engineering or migration, independently of its internal quality
(see Figure 1). However, understanding and modernizing a legacy
system with poor internal quality is a complex task. For example,
systems usually evolve in space, adding new features, and time,
with features being revised [35], which make its comprehension
difficult. For such a situation, we believe that using refactoring
strategies can be a good way to improve the legacy internal quality
to face the modernization. However, the literature is scarce on how
this “pre-modernization” activity should take place. This relates to
the possibility regarding hybrid environments (C3) as during the
preparation for the evolution, the old legacy and the new migrated
system may have to coexist. A research direction is to leverage
Foundation Models in tasks related to code understanding [37] and
refactoring [2] during the modernization.
C8: Propose non-intrusive approaches and techniques. Prac-
titioners usually have preferences for using some technologies,
tools, and workflows. Based on that, researchers should propose
modernization approaches and tools that take into account these
preferences. Non-intrusive approaches and techniques are easier
to transfer to practice [16]. Thus, we envisage that in addition to
propose new solutions to the modernization challenges (e.g., C3,
C5, C6 and C7), researches should also think of lightweight ways of
integrating such solution in the technologies, tools, and workflows
already in use by practitioners. This challenge is related to C4, as
the need for non-intrusive approaches reflects the need to consider
operational and organizational aspects of companies.
C9: Train workforce with skills for dealing with moderniza-
tion. Figure 2 presents the different perspectives of the software
modernization. These several perspectives must be considered to
train the workforce in charge of operationalizing the moderniza-
tion process [39]. Thus, a challenge is to training the workforce
with expertise to deal with the complexity of software moderniza-
tion [40]. To address this challenges, educators can benefit from
contributions to C1, in which a body of knowledge can serve as the
basis for designing new courses in academia. Training also relates
to C4, as it directly affects operational and organizational aspects
that are important for companies, such as empowering employees.
C10: Modernization for small and medium-sized enterprises
(SMEs). In the literature, we observe that some software engineer-
ing activities should be conducted differently in the context of

SMEs [17, 46]. This might also be the case for software modern-
ization [4]. Based on that, research needs to be conducted to deal
with challenges faced by SMEs when modernizing their legacy sys-
tems to grow and be more competitive. This should be considered
by researchers when creating a body of knowledge for software
modernization. The modernization in context of SMEs also relate
directly to C4, as the organizational aspects of SMEs are different
from big enterprises. Consequently, it may have a significant impact
on the decision to modernize the legacy or not (C5).

4 THE MODERNIZATIONWORKFLOW
Based on recent systematic mapping studies [5, 52], we defined
a preliminary multi-perspective modernization workflow, which
is presented in Figure 3. This process is composed of four phases,
namely initiation, planning, execution, and transition. Additionally,
these phases have six activities. The activities are sequential, but it
is possible to return to previous activities, as shown by the arrows.
Below each activity, we describe some tasks, which are related to
the modernization quadrant (Figure 1) and the multi perspectives
(Figure 2). This workflow is an initial proposal for establishing a gen-
eral process to be enriched with specific information or additional
activities to deal with the challenges presented in Section 3. For
instance, if a process is desired to SMEs (C10), constraints related
to limited resources should be considered.

5 CONCLUSION
Software modernization is a fundamental activity of software en-
gineering, since inevitably requirements change, and technology
advances, and new business models emerge. Despite that, research
on this topic has not been following the modern software devel-
opment, and legacy systems still remain a problem. To fill this gap
and to sparkle the research on this topic, we present a discussion
of software modernization in the light of contemporary software
modernization. We revisited some pieces of work and introduce
the multi-perspective of contemporary software modernization.
Based on that, in this work, we discussed 10 challenges to motivate
and guide to new studies. These challenges can be employed as a
research agenda for future work on this topic.

ACKNOWLEDGMENTS
The research reported in this paper has been funded by BMK,
BMDW, and the State of Upper Austria in the frame of SCCH,
part of the COMET Programme managed by FFG as well as the
Austrian Science Fund (FWF, P31989-N31).

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Contemporary Software Modernization: Perspectives and Challenges to Deal with Legacy Systems SE 2030, July 2024, Porto de Galinhas, Brazil

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

REFERENCES
[1] Shivali Agarwal, Sridhar Chimalakonda, Saravanan Krishnan, Vini Kanvar,

and Samveg Shah. 2024. Tutorial Report on Legacy Software Moderniza-
tion: A Journey From Non-AI to Generative AI Approaches. In 17th Inno-
vations in Software Engineering Conference (ISEC). ACM, Article 19, 3 pages.
https://doi.org/10.1145/3641399.3641434

[2] Eman Abdullah AlOmar, Anushkrishna Venkatakrishnan, Mohamed Wiem
Mkaouer, Christian D Newman, and Ali Ouni. 2024. How to Refactor this Code?
An Exploratory Study on Developer-ChatGPT Refactoring Conversations. arXiv
preprint arXiv:2402.06013 (2024).

[3] Anas MR AlSobeh and Aws A Magableh. 2018. An Aspect-Oriented With BIP
Components for Better Crosscutting Concerns Modernization in IOT Applica-
tions. In CS & IT Conference Proceedings, Vol. 8. CS & IT Conference Proceedings.

[4] B. Althani, S. Khaddaj, and B. Makoond. 2016. A Quality Assured Framework
for Cloud Adaptation and Modernization of Enterprise Applications. In IEEE Intl
Conference on Computational Science and Engineering (CSE) and IEEE Intl Con-
ference on Embedded and Ubiquitous Computing (EUC) and 15th Intl Symposium
on Distributed Computing and Applications for Business Engineering (DCABES).
634–637. https://doi.org/10.1109/CSE-EUC-DCABES.2016.251

[5] Wesley K. G. Assunção, Roberto E. Lopez-Herrejon, Lukas Linsbauer, Silvia R.
Vergilio, and Alexander Egyed. 2017. Reengineering legacy applications into
software product lines: a systematic mapping. Empirical Software Engineering
22, 6 (feb 2017), 2972–3016. https://doi.org/10.1007/s10664-017-9499-z

[6] Wesley K. G. Assunção, Jacob Krüger, and Willian D. F. Mendonça. 2020. Vari-
ability Management Meets Microservices: Six Challenges of Re-Engineering
Microservice-Based Webshops. In 24th ACM Conference on Systems and Software
Product Line: Volume A - Volume A (Montreal, Quebec, Canada) (SPLC ’20). As-
sociation for Computing Machinery, New York, NY, USA, Article 22, 6 pages.
https://doi.org/10.1145/3382025.3414942

[7] David Beach. 2019. Legacy systems push up costs of digital transforma-
tion. https://www.theglobaltreasurer.com/2018/09/27/legacy-systems-push-
up-costs-of-digital-transformation/.

[8] K. Bennett. 1995. Legacy systems: coping with success. IEEE Software 12, 1 (jan
1995), 19–23. https://doi.org/10.1109/52.363157

[9] Nagendra Bommadevara, Andrea Del Miglio, and Steve Jansen. 2018. Cloud
adoption to accelerate IT modernization. Digitial McKinsey: Insights (2018).

[10] Georg Buchgeher, Rudolf Ramler, Heinz Stummer, and Hannes Kaufmann. 2021.
Adopting Microservices for Industrial Control Systems: A Five Step Migration
Path. In 2021 26th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA). IEEE, 1–8.

[11] Georg Buchgeher, Stefan Schöberl, Verena Geist, Bernhard Dorninger, Philipp
Haindl, and Rainer Weinreich. 2023. Using Architecture Decision Records in
Open Source Projects–An MSR Study on GitHub. IEEE Access (2023).

[12] Luiz Carvalho, Alessandro Garcia, Wesley K. G. Assunção, Rafael de Mello, and
Maria Julia de Lima. 2019. Analysis of the Criteria Adopted in Industry to Extract
Microservices. In 7th International Workshop on Conducting Empirical Studies in
Industry and 6th International Workshop on Software Engineering Research and
Industrial Practice. IEEE, 22–29.

[13] R. Cherinka, S. Foote, J. Burgo, and J. Prezzama. 2022. The Impact of Agile
Methods and “DevOps” on Day 2+Operations for Large Enterprises. In Intelligent
Computing, Kohei Arai (Ed.). Springer, Cham, 1068–1081.

[14] Chia-Chu Chiang and Coskun Bayrak. 2006. Legacy Software Modernization. In
IEEE International Conference on Systems, Man and Cybernetics, Vol. 2. 1304–1309.
https://doi.org/10.1109/ICSMC.2006.384895

[15] Comella-Dorda, Wallnau, Seacord, and Robert. 2000. A survey of black-box
modernization approaches for information systems. In International Conference
on Software Maintenance. 173–183. https://doi.org/10.1109/ICSM.2000.883039

[16] Caio H. Costa, Paulo H. M. Maia, Nabor C. Mendonça, and Lincoln S. Rocha.
2016. Supporting Partial Database Migration to the Cloud Using Non-intrusive
Software Adaptations: An Experience Report. In Advances in Service-Oriented
and Cloud Computing. Springer, Cham, 238–248.

[17] Ivonei Freitas da Silva, Paulo Anselmo da Mota Silveira Neto, Pádraig O’Leary,
Eduardo Santana de Almeida, and Silvio Romero de Lemos Meira. 2014. Software
product line scoping and requirements engineering in a small and medium-sized
enterprise: An industrial case study. Journal of Systems and Software 88 (2014),
189–206. https://doi.org/10.1016/j.jss.2013.10.040

[18] Paolo Di Francesco, Patricia Lago, and Ivano Malavolta. 2018. Migrating towards
microservice architectures: an industrial survey. In International conference on
software architecture. IEEE, 29–2909.

[19] Bassey Asuquo Ekanem and Evans Woherem. 2016. Dealing with components
reusability issues as cutting-edge applications turn legacy. In SAI Computing
Conference (SAI). IEEE, 1190–1198. https://doi.org/10.1109/SAI.2016.7556129

[20] Timothy C Fanelli, Scott C Simons, and Sean Banerjee. 2016. A systematic
framework for modernizing legacy application systems. In 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), Vol. 1.
IEEE, 678–682.

[21] Brian Fitzgerald and Klaas-Jan Stol. 2017. Continuous software engineering:
A roadmap and agenda. Journal of Systems and Software 123 (2017), 176–189.

https://doi.org/10.1016/j.jss.2015.06.063
[22] Jonas Fritzsch, Justus Bogner, Stefan Wagner, and Alfred Zimmermann. 2019.

Microservices Migration in Industry: Intentions, Strategies, and Challenges. In
International Conference on Software Maintenance and Evolution. IEEE, 481–490.

[23] GAO. 2019. Information Technology: Agencies Need to Develop Modernization
Plans for Critical Legacy Systems. https://www.gao.gov/products/gao-19-471.

[24] Noopur Goel. 2015. Legacy Systems towards Aspect-Oriented Systems. In
Achieving Enterprise Agility through Innovative Software Development. IGI Global,
262–286.

[25] Alexandru F Iosif-Lazar, Ahmad Salim Al-Sibahi, Aleksandar S Dimovski,
Juha Erik Savolainen, Krzysztof Sierszecki, and Andrzej Wasowski. 2015. Experi-
ences from designing and validating a software modernization transformation (E).
In 30th IEEE/ACM International Conference on Automated Software Engineering.
IEEE, 597–607.

[26] Ravi Khadka, Belfrit V Batlajery, AmirM Saeidi, Slinger Jansen, and JurriaanHage.
2014. How do professionals perceive legacy systems and softwaremodernization?.
In 36th International Conference on Software Engineering. 36–47.

[27] Ravi Khadka, Prajan Shrestha, Bart Klein, Amir Saeidi, Jurriaan Hage, Slinger
Jansen, Edwin van Dis, and Magiel Bruntink. 2015. Does software moderniza-
tion deliver what it aimed for? A post modernization analysis of five software
modernization case studies. In International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 477–486.

[28] Alireza Khalilipour, Moharram Challenger, Mehmet Onat, Hale Gezgen, and
Geylani Kardas. 2021. Refactoring Legacy Software for Layer Separation. In-
ternational Journal of Software Engineering and Knowledge Engineering 31, 02
(2021), 217–247.

[29] Holger Knoche and Wilhelm Hasselbring. 2018. Using Microservices for Legacy
Software Modernization. IEEE Software 35, 3 (2018), 44–49. https://doi.org/10.
1109/MS.2018.2141035

[30] Jacob Krüger, Wardah Mahmood, and Thorsten Berger. 2020. Promote-Pl: A
Round-Trip Engineering Process Model for Adopting and Evolving Product
Lines. In 24th ACM Conference on Systems and Software Product Line (SPLC).
ACM, Article 2, 12 pages. https://doi.org/10.1145/3382025.3414970

[31] Pablo Luiz Leon and Flávio Eduardo Aoki Horita. 2021. On the modernization
of systems for supporting digital transformation: A research agenda. In XVII
Brazilian Symposium on Information Systems. 1–8.

[32] Robert Cecil Martin. 2003. Agile software development: principles, patterns, and
practices. Prentice Hall PTR.

[33] Abir M’baya, Jannik Laval, and Nejib Moalla. 2017. An assessment conceptual
framework for the modernization of legacy systems. In 11th International Con-
ference on Software, Knowledge, Information Management and Applications. IEEE,
1–11.

[34] Nabor C. Mendonça, Craig Box, Costin Manolache, and Louis Ryan. 2021. The
Monolith Strikes Back: Why Istio Migrated From Microservices to a Monolithic
Architecture. IEEE Software 38, 5 (2021), 17–22. https://doi.org/10.1109/MS.2021.
3080335

[35] Gabriela K. Michelon, Wesley K. G. Assunção, David Obermann, Lukas Linsbauer,
Paul Grünbacher, and Alexander Egyed. 2021. The Life Cycle of Features in
Highly-Configurable Software Systems Evolving in Space and Time. In 20th
ACM SIGPLAN International Conference on Generative Programming: Concepts
and Experiences. ACM.

[36] Richard Morris. 2021. Keeping old computers going costs government £2.3bn a year,
says report. https://www.bbc.com/news/uk-politics-58085316.

[37] Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and Brad
Myers. 2024. Using an llm to help with code understanding. In IEEE/ACM 46th
International Conference on Software Engineering (ICSE). IEEE, 881–881.

[38] CD Norton, C Zuffada, OV Kalashnikova, and VK Decyk. 2008. Challenges in
Modernizing Legacy Scientific Software. In AGU Fall Meeting Abstracts, Vol. 2008.
IN11A–1016.

[39] KG Prokofyev, OV Dmitrieva, TR Zmyzgova, and EN Polyakova. 2019. Modern
Engineering Education as a Key Element of Russian Technological Modernization
in the Context of Digital Economy. In International Scientific Conference “Far East
Con”(ISCFEC 2018) Advances in Economics, Business and Management Research,
Vol. 47. 652–656.

[40] Ricardo Pérez-Castillo, Manuel A. Serrano, and Mario Piattini. 2021. Software
modernization to embrace quantum technology. Advances in Engineering Soft-
ware 151 (2021), 102933. https://doi.org/10.1016/j.advengsoft.2020.102933

[41] Vinay T R and Ajeet A Chikkamannur. 2016. A methodology for migration of
software from single-core to multi-core machine. In 2016 International Conference
on Computation System and Information Technology for Sustainable Solutions
(CSITSS). 367–369. https://doi.org/10.1109/CSITSS.2016.7779388

[42] Jonas Åkesson, Sebastian Nilsson, Jacob Krüger, and Thorsten Berger. 2019.
Migrating the Android Apo-Games into an Annotation-Based Software Product
Line. In 23rd International Systems and Software Product Line Conference (SPLC).
ACM, 103–107. https://doi.org/10.1145/3336294.3342362

[43] SAMRizvi, Zeba Khanam, and JamiaMillia Islamia. 2010. A Comparative Study of
using Object oriented approach and Aspect oriented approach for the Evolution

5

https://doi.org/10.1145/3641399.3641434
https://doi.org/10.1109/CSE-EUC-DCABES.2016.251
https://doi.org/10.1007/s10664-017-9499-z
https://doi.org/10.1145/3382025.3414942
https://www.theglobaltreasurer.com/2018/09/27/legacy-systems-push-up-costs-of-digital-transformation/
https://www.theglobaltreasurer.com/2018/09/27/legacy-systems-push-up-costs-of-digital-transformation/
https://doi.org/10.1109/52.363157
https://doi.org/10.1109/ICSMC.2006.384895
https://doi.org/10.1109/ICSM.2000.883039
https://doi.org/10.1016/j.jss.2013.10.040
https://doi.org/10.1109/SAI.2016.7556129
https://doi.org/10.1016/j.jss.2015.06.063
https://www.gao.gov/products/gao-19-471
https://doi.org/10.1109/MS.2018.2141035
https://doi.org/10.1109/MS.2018.2141035
https://doi.org/10.1145/3382025.3414970
https://doi.org/10.1109/MS.2021.3080335
https://doi.org/10.1109/MS.2021.3080335
https://www.bbc.com/news/uk-politics-58085316
https://doi.org/10.1016/j.advengsoft.2020.102933
https://doi.org/10.1109/CSITSS.2016.7779388
https://doi.org/10.1145/3336294.3342362

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

SE 2030, July 2024, Porto de Galinhas, Brazil Assunção et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

of Legacy System. International Journal of Computer Applications 975 (2010),
8887.

[44] Paul Robertson. 1997. Integrating Legacy Systems with Modern Corporate
Applications. Commun. ACM 40, 5 (May 1997), 39–46. https://doi.org/10.1145/
253769.253785

[45] Shaik Mohammed Salman, Alessandro V. Papadopoulos, Saad Mubeen, and
Thomas Nolte. 2021. A systematic methodology to migrate complex real-time
software systems to multi-core platforms. Journal of Systems Architecture 117
(2021), 102087. https://doi.org/10.1016/j.sysarc.2021.102087

[46] Mary-Luz Sánchez-Gordón, Ricardo Colomo-Palacios, Antonio de Amescua Seco,
and Rory V. O’Connor. 2016. The Route to Software Process Improvement in Small-
and Medium-Sized Enterprises. Springer, Cham, 109–136. https://doi.org/10.
1007/978-3-319-31545-4_7

[47] Robert Seacord, Santiago Comella-Dorda, Grace Lewis, Patrick Place, and Daniel
Plakosh. 2001. Legacy System Modernization Strategies. Technical Report
CMU/SEI-2001-TR-025. Software Engineering Institute, Carnegie Mellon Uni-
versity, Pittsburgh, PA. http://resources.sei.cmu.edu/library/asset-view.cfm?
AssetID=5729

[48] Robert C. Seacord, Daniel Plakosh, and Grace A. Lewis. 2003. Modernizing
Legacy Systems: Software Technologies, Engineering Process and Business Practices.

Addison-Wesley, USA.
[49] Stefan Strobl, Mario Bernhart, and Thomas Grechenig. 2020. Towards a Topology

for Legacy System Migration. In IEEE/ACM 42nd International Conference on
Software Engineering Workshops. 586–594.

[50] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. 2017. Processes, motiva-
tions, and issues for migrating to microservices architectures: An empirical
investigation. IEEE Cloud Computing 4, 5 (2017), 22–32.

[51] Yingying Wang, Harshavardhan Kadiyala, and Julia Rubin. 2021. Promises and
challenges of microservices: an exploratory study. Empirical Software Engineering
26, 4 (may 2021). https://doi.org/10.1007/s10664-020-09910-y

[52] Daniele Wolfart, Wesley K. G. Assunção, Ivonei F. da Silva, Diogo C. P. Domingos,
Ederson Schmeing, Guilherme L. Donin Villaca, and Diogo do N. Paza. 2021.
Modernizing Legacy Systems with Microservices: A Roadmap. In 25th Evaluation
and Assessment in Software Engineering (EASE). ACM, 149–159.

[53] Xudong Zhao, Xiaolong Xu, Lianyong Qi, Xiaoyu Xia, Muhammad Bilal, Wen-
wen Gong, and Huaizhen Kou. 2024. Unraveling quantum computing system
architectures: An extensive survey of cutting-edge paradigms. Information and
Software Technology 167 (2024), 107380.

6

https://doi.org/10.1145/253769.253785
https://doi.org/10.1145/253769.253785
https://doi.org/10.1016/j.sysarc.2021.102087
https://doi.org/10.1007/978-3-319-31545-4_7
https://doi.org/10.1007/978-3-319-31545-4_7
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5729
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5729
https://doi.org/10.1007/s10664-020-09910-y

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Multi-perspective and Challenges
	4 The Modernization Workflow
	5 Conclusion
	Acknowledgments
	References

